

Study Session on Phosphor-Free White LEDs for Solid-State Lighting

White LEDs for Visible Light Communications

Lawrence R. Chen and David V. Plant McGill University

Study Session: White LEDs for Solid-State Lighting

Motivation

 Indoor wireless communication systems for broadband connectivity

Visible Light Communications

- Separate red, green, and blue (RGB) LEDs
 - Higher modulation
 bandwidth
 - Allows for the possibility of WDM to increase transmission capacity

- White LEDs
 - -Generally, based on wideband phosphors
 - Simple and potentially low-cost
 - Limited modulation bandwidth due to relaxation time of phosphor

White LED Modulation BW Limit

 Typical frequency response of phosphor-based white LED

C. H. Yeh et al., Opt. Express, 20(15), 16218, 2012

Study Session: White LEDs for Solid-State Lighting

Overcoming the Modulation BW Limit

- Use spectrally efficient modulation formats
 - -Quaternary-amplitude-shift-keying, e.g., 4-ASK
 - Orthogonal frequency division multiplexing (OFDM)
- Use phosphor-free white LEDs

 Unite the technologies developed in other projects, e.g., phosphor-free nanowire white LEDs with graphene transparent electrodes, in the form of practical systems demonstrations

 To develop a visible light communication system/testbed for broadband indoor wireless communications

- Available infrastructure
 - -32 GHz arbitrary waveform generator
 - -33 GHz real-time oscilloscope
- Build on experience in fiber optic and free-space optical communications
 - Spectrally efficient modulation formats for longhaul transmission, including coherent communications and optical OFDM
 - Demonstrations of large channel count free-space optical backplanes

- To characterize the modulation bandwidth of phosphor-free nanowire white LEDs and investigate the generation of spectrally efficient modulation formats, including 4-ASK and M-QAM OFDM
- Available infrastructure
 - -Nanopositioning equipment
 - -DC and RF probes
 - -20 GHz and 50 GHz RF synthesizers
 - Digital communication analyzers with 65 GHz optical sampling modules and 80 GHz electrical sampling modules

Previous Results

• 4-ASK

C. H. Yeh et al., Opt. Express, 20(15), 16218, 2012

Study Session: White LEDs for Solid-State Lighting

Previous Results

G. Cossu et al., Opt. Express, 20(26), B501, 2012

Study Session: White LEDs for Solid-State Lighting

 To demonstrate visible light communications using phosphor-free nanowire white LEDs at transmission speeds in excees of 5 Gb/s