

Unique features of III–V nitrides (GaN)		
 Polarization fields Capture of electrons into QWs Electrons drift away from last 0 Very thin QWs to reduce QCS 	is hindered QW into spacer layer E (Quantum-confined Stark Effect)	
 Asymmetry between electron a Electron concentration Hole concentration Electron mobility Hole mobility (n µ_n) / (p µ_p) > 100 → 	and hole transport $n \approx 10^{18} \text{ cm}^{-3}$ $p \approx 10^{17} \text{ cm}^{-3}$ $\mu_n \approx 250 \text{ cm}^2 / (\text{V s})$ $\mu_p \approx 2.5 \text{ cm}^2 / (\text{V s})$ High-level injection	
 Dislocation density TDD in GaN grown on sapphire is 10⁷ – 10⁹ cm⁻² 		
 InN clusters on GaInN Alloy clustering in GaInN, espective 	ecially at high In mole fractions	

• Electron leakage in low-injection regime

$$J_{\text{Diffusion}} = \frac{e D_n \Delta n_p(0)}{L_{p-\text{GaN}}}$$
• Electron leakage driven by electric field in high-injection regime

$$J_{\text{Drift}} = e \mu_n \Delta n_p(0) \mathcal{E} = e \mu_n \delta n_{\text{QW}} \frac{J_{\text{Total}}}{\sigma_p}$$
• One obtains

$$J_{\text{Drift}} = e \mu_n \delta n_{\text{QW}} \frac{J_{\text{Total}}}{e \mu_p \rho_{p0}} \approx e d_{\text{active}} \frac{\delta \mu_n}{\mu_p \rho_{p0}} B n_{\text{QW}}^3 = e d_{\text{active}} C_{\text{DL}} n_{\text{QW}}^3$$

Testing models for droop				
Properties	Experiments	Drift-induced leakage model		
Magnitude of <i>C</i> coefficient	$C = 10^{-29} \mathrm{cm^6/s} \pm \mathrm{factor}$ of 10	~ 10 ⁻²⁹ cm ⁶ /s		
Onset-of-droop current density	1 – 10 A/cm ²	\checkmark		
Temperature dependence of the droop	<i>t</i> ↓ → <i>c</i> ↑	\checkmark		
Symmetry of the EQE- vs <i>n</i> curve	Asymmetric	Asymmetric		
Droop in different materials	GaInN and AlGaInP	\checkmark		

Conclusion		
 The Future of Lighting has begun We are beginning to appreciate what can be accomplished by going "beyond the replacement paradigm" 		
 Challenges Light extraction New materials with tunable refractive index New LED structures 		
 The Efficiency Droop The technical community is divided on the question of the Efficiency Droop However, a consensus may form around the Asymmetry of carrier transport being the origin of the droop 		
 The Promises are greater than the Challenges We are entering a new era in lighting Huge energy savings are made possible Very positive environmental effects are enabled Smart Lighting – The Future of Lighting 	54	

